skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haydari, Ammar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traffic signal controller (TSC) has a crucial role in managing traffic flow in urban areas. Recently, reinforcement learning (RL) models have received a great attention for TSC with promising results. However, these RL-TSC models still need to be improved for real-world deployment due to limited exploration of different performance metrics such as fair traffic scheduling or air quality impact. In this work, we introduce a constrained multi-objective RL model that minimizes multiple constrained objectives while achieving a higher expected reward. Furthermore, our proposed RL strategy integrates the peak and average constraint models to the RL problem formulation with maximum entropy off-policy models. We applied this strategy to a single TSC and a network of TSCs. As part of this constrained RL-TSC formulation, we discuss fairness and air quality parameters as constraints for the closed-loop control system optimization model at TSCs calledFAirLight. Our experimental analysis shows that the proposedFAirLightachieves a good traffic flow performance in terms of average waiting time while being fair and environmentally friendly. Our method outperforms the baseline models and allows a more comprehensive view of RL-TSC regarding its applicability to the real world. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026
  2. Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel machine learning techniques for intrusion detection and mitigation based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods is evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior detection and localization performance of the proposed methods by 78% in the best case and 27% in the worst case, while achieving the same level of false alarm probability. 
    more » « less
  3. null (Ed.)